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Tomaž Bregar, Ahmed El Mahmoudi, Gregor Čepon, Daniel J. Rixen, Miha Boltežar, Performance of the Expanded

Virtual Point Transformation on a Complex Test Structure, Experimental Techniques, 2020,
https://doi.org/10.1007/s40799-020-00398-1

Abstract

The Virtual Point Transformation (VPT) makes it possible to experimentally identify the full
DoF FRF matrix by projecting the measured displacements onto the Interface Deformation Modes
(IDMs). The VP FRFs were already successfully used in Frequency-Based Substructuring (FBS);
however, the VPT is susceptible to deviations in the impact location and orientation, as well as to
deviations in the sensor’s sensitivity and positioning. Uncertainties associated with the sensors can
be decreased by using the expanded VPT. This expanded VPT allows the projection of a directly
measured rotational response onto the Interface Deformation Modes (IDMs). The consistency of the
transformation is achieved by using a rotational weighting matrix, which is formulated to minimize
the norm of the overall displacements due to the rotational residual at the VP for each rotational
sensor. The rotational response is measured using a direct piezoelectric rotational accelerometer. In
this paper the application of the expanded virtual point transformation and the possible advantages
are explored on a complex and engineering-like test structure. Both transformations, standard and
expanded, are performed for each VP to enable a side-by-side comparison.

Keywords: frequency-based substructuring, expanded virtual point transformation, rotational
accelerometer, interface rotation

1 Introduction

The Dynamic Substructuring (DS) framework makes it possible to dynamically characterize a com-
plex product by subdividing it into smaller subsystems [1]. Each subsystem can then be analyzed
independently and virtually assembled to predict the overall dynamics of the final product. This
component-wise approach has proven to be advantageous, especially during the early design stage,
when a full prototype might not be available. The dynamic characterization of each subsystem can
be in different domains, such as the physical, modal, frequency, time or state-space domain [2].
Even with distinct differences between each representation, there are two conditions that must be
satisfied at the interface between the substructures and are mathematically equivalent throughout
the different domains. The first condition is displacement compatibility and the second is force
equilibrium.
One of the frameworks where the numerical and experimental models can be coupled interchange-
ably is Frequency-Based Substructuring (FBS). The idea of frequency-based assembly was already
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considered in the early 70’s [3, 4] and further elaborated by Jetmundsen et al. [5] at the end of the
80’s. However, the limitations associated with the measurement equipment in that time rendered
the application of the idea in practice difficult. This drawback stagnated the development until the
beginning of the 21st century when the topic received a new attention and more systemic notations
were developed, such as the Lagrange Multiplier FBS method (LM FBS) [6]. The main challenge
with the FBS is the interface modelling and measuring full-degrees-of-freedom (DoF) Frequency
Response Functions (FRFs). Coupling substructures in the FBS without the rotational DoF can
lead to erroneous results [7]. Rotational DoFs are accessible from a numerical model; however,
acquiring rotational DoFs from experimental measurements is still problematic, especially for the
moment-excited part of the response.
The overall inaccessibility of the rotational DoF led to the development of several methods that
implicitly measure and include rotations in the coupling procedure [7, 8]. One of the methods
that include the Rotational Degrees of Freedom (RDoF) implicitly is the Equivalent Multi Point
Connection (EMPC) [9]. With the EMPC method, multiple connection points are coupled to
account for the rotational DoF and most of the time the interface problem is overdetermined.1

With the excessive overdetermination of the interface even a small error can result in erroneous
coupling results. The problem with EMPC overdetermination can be solved by IDM filtering,
where the measured translation DoFs are projected onto the Interface Deformation Modes (IDMs)
and with that a generalized set of displacements and forces is obtained in a minimal-quadratic sense
[9, 10]. The IDM filtering is also known under the name of Virtual Point Transformation [11]. The
transformation matrices in the VPT are determined from the positions of the sensors and impacts;
however, even a small deviation in the positions can lead to a large error in the transformed FRFs.
One way of decreasing the uncertainties associated with the positions of the accelerometers is using
the expanded VPT, where a directly measured rotational response is included in the transformation
[12]. The rotational response is measured with a rotational accelerometer [13].
The objective of this paper is to compare the performance of the standard VPT and the expanded
VPT on a complex structure. For a better understanding, the next section briefly summarizes the
LM FBS together with the VPT and an expansion where a directly measured rotational response
is included in the transformation. Afterwards, the expanded VPT is compared with the standard
VPT on a test structure representing a simpler version of an engine-transmission unit’s suspension.
A side-by-side comparison is made on a coupling example, where the source structure is coupled
through rubber mounts to a receiver. In the final section a conclusion is drawn, together with
general recommendations for the use of the expanded VPT.

2 Theory

With frequency-based substructuring the admittance of the assembled system can be determined
from the separate admittances of the substructures. The governing equation of two non-assembled
subsystems YA and YB can be written in block-diagonal form YA|B, as follows:2

YA|B(f + g) =

[
YA 0

0 YB

]
(f + g) =

[
uA

uB

]
, (1)

where u denotes the displacements, f the external forces and g the interface forces between the
two substructures. To couple the substructures, two conditions must be satisfied at the interface.
The first is the condition of compatibility (uA

2 − uB
2 = 0) and the second is the force equilibrium

(gA2 = −gB2 ), where the (?)2 refers to the interface DoF. Both conditions can be expressed with a

1An interface is considered to be overdetermined when more DoF are included in the coupling than are in fact
needed. Consider a perfectly rigid interface, where perfect coupling can be performed with only 6 DoFs (3 translation
and 3 rotational). However, with the EMPC method one would need to use 3 triaxial translation accelerometers to
account for the rotational DoFs. Therefore, the interface would be overdetermined.

2An explicit dependency on the frequency is omitted for the simplicity of the notation, and this will also be used
for the remainder of the paper.

2



signed Boolean matrix B and the substructures can then be coupled using the LM FBS notation
[6]:

YABf =
(
YA|B −YA|BBT

(
BYA|BBT

)−1
BYA|B

)
f = u. (2)

The collocation of the interface DoF on both substructures was implicitly assumed in the LM FBS
formulation. The collocation of the DoF at the interface is in reality inaccessible for an exper-
imental setup, since neither the sensors nor the excitation points are collocated. Therefore, the
substructures cannot be directly coupled using only the LM FBS.

2.1 Standard virtual point transformation

Collocation at the interface between the two substructures can be obtained using the Virtual Point
Transformation (VPT) [11]. The VPT is a geometrical transformation where the measured trans-
lation DoFs are projected onto the interface deformation modes, which are assumed to properly
describe the interface. The interface is usually assumed to be rigid; however, the rigid IDMs can
be extended with the proper flexible interface modes [14].
After applying the transformation, a generalized set of displacements q and generalized forces m
are obtained for each substructure:

Yqm = TuY22T
T
f , (3)

where Y22 denotes the non-collocated interface DoF, Tu is the displacement transformation matrix
and Tf is the force transformation matrix. The set of generalized displacements q is obtained in a
minimal-quadratic sense:

q = Tuu where Tu , (RT
uWuRu)−1RT

uWu, (4)

where u denotes the measured interface displacements.3 The Ru is the so-called IDM matrix,
defined based on the IDMs and the positions of the sensors and the Wu is a displacement weighting
matrix used to assign a weighting to certain sensor channels in the error minimisation. In a similar
way the force transformation matrix is defined with the matrix Rf based on the IDMs and the
positions of the impacts. Additionally, a diagonal weighting matrix is introduced Wf:

f̃ = TT
f m where TT

f , WfRf(R
T
f WfRf)

−1. (5)

If the locations of the impacts and sensors were accurate and the interface was perfectly rigid,
then the transformation would be perfect and with that also the generalized displacements and
forces. However, the VPT has been shown to be affected by a rather small bias in the locations and
orientations of the sensors as well as the impacts [11]. In the next section an expansion to the VPT
is presented, where the directly measured rotational response is included in the transformation.
The properties of the rotational accelerometer are expected to increase the overall robustness of
the VPT and increase the consistency of the generalized DoF.

2.2 Expanded virtual point transformation

Rotational DoFs are essential for the coupling of substructures in the FBS. With the virtual point
transformation, the rotational DoFs are estimated based on the prevailing assumption of local
rigidity in the vicinity of the interface (provided that the locations of the sensors and impacts are
known). However, the estimation of the sensor as well as the impact positions and orientations can
only be determined up to a certain measurement accuracy [15]. The high sensitivity of indirect
methods led to the development of a direct, quartz-based, piezoelectric, rotational accelerometer
[13].
The rotational FRFs obtained from the rotational accelerometer are accurate and the sensor itself
has a relatively low cross-axis sensitivity [16]. The use of a rotational accelerometer in the FBS
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Figure 1: Interface example with virtual point and triaxial rotational sensor [12].

has already proven to be useful [17], which is one of the primary reasons behind the expansion of
the virtual point transformation with a directly measured rotational response.
To derive the expansion, consider a relatively simple interface with a triaxial rotational accelerom-
eter (Fig. 1). The following kinematic relation can be written between the virtual DoF qν and the
sensor rotation θk [12]:

θkxθky
θkz

 =

ekx,X ekx,Y ekx,Z
eky,X eky,Y eky,Z
ekz,X ekz,Y ekz,Z

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




qνX
qνY
qνZ
qνθX
qνθY
qνθZ


+

µkθxµkθy
µkθz

 , (6)

where µkθ contains any residual motion, which can consist of the motion not spanned by the
subspace of the IDMs, as well as any measurement error. A clear advantage of the expansion can
be seen from the kinematic relation since the rotations depend only on the sensor orientation and
not on the location of the sensor if the rigid assumption of the interface is valid. If we expand the
formulation to include all the directly measured rotational responses we obtain:

θ = Rθq + µθ. (7)

Equation (7) can be combined with all the measured translation DoFs as follows:[
u
θ

]
=

[
Ru

Rθ

]
q +

[
µu

µθ

]
= Ru,θq + µu,θ. (8)

Similar to the standard VPT the equation above can be solved for q in a minimal-quadratic sense,
where the norm of the weighted residuals on the displacements and rotations is minimized:

q = argmin

([
µu

µθ

]T
Wu,θ

[
µu

µθ

])
where Wu,θ = diag

[
Wu,Wθ

]
. (9)

If both weighting matrices Wθ and Wu are chosen as identity matrices the residuals are not
evaluated in a comparable norm, since µuµ

T
u 6= µθµ

T
θ . In order to evaluate both residuals in a

comparable way, a proper weighting matrix for the rotations should be used [12].
The rotational weighting matrix can be defined by estimating the translation at the virtual point
based on the residual rotation of each rotational channel. Presume that the rotational sensor k

3The sensors used for measuring the interface displacement u are usually tri-axial accelerometers, but for the
simplicity of the notation, displacements are considered here.
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measuring rotation around the x axis has a residual µkθx (see Fig. 1). Based on the distance between

the x axis across the VP and the sensor location, the displacement at the VP would be µkθxd
k
x, where

dkx denotes the aforementioned distance, which is equal to
√
r2y + r2z . A similar weighting can be

defined for all the other rotational channels and with that the rotational weighting matrix is defined
as [12]:

Wθ = diag
[(
dkx
)2
,
(
dky
)2
,
(
dkz
)2
, . . .

]
. (10)

With this weighting matrix, Eq. (7) can be solved for q and the combined transformation matrix
Tu,θ is obtained:

q = Tu,θ

[
u
θ

]
where Tu,θ , (RT

u,θWu,θRu,θ)
−1RT

u,θWu,θ. (11)

With this weighting matrix, the rotational and displacement residuals are minimized in a compa-
rable norm. The positions of the rotational sensors are only used to define a proper norm for the
least-square problem. Therefore, if the rotational measurement were perfect, the rotation of the
VP would be defined exactly (notwithstanding any error in the position of the rotational sensors).

Note that a particular case for the rotational weighting matrix is when the rotational accelerometer
is placed exactly at the VP location. Then the matrix Wθ would become a zero matrix and the
directly measured rotational response would be excluded from the transformation. Therefore, care
should be taken not to place the rotational accelerometer in exactly the same position as the VP.
This can almost always be achieved since the position of the VP near the interface is arbitrary, to
a certain extent.

2.3 Measurement-quality indicators

One of the advantages of the VPT is also the ability to evaluate the quality of the transformation
and the associated measurements by utilizing the assumption of interface rigidity. After the trans-
formation, the virtual DoF can be expanded (or projected) back on the measured DoFs and with
that the assumption of interface rigidity can be evaluated [11, 18]. Two different quality indicators
can be calculated for the displacement/force transformation, which are the specific and overall
sensor/impact consistency indicators [11]. With the consistency indicators, bad sensor channels or
impact locations can be identified and removed from the transformation.
An additional quality indicator can be defined using the reciprocity property of the VP DoFs.
Virtual point motions and loads are in fact collocated; therefore, the virtual point FRF matrix
should be reciprocal. A coherence criterion can be used to evaluate the reciprocity of the VP DoFs
per frequency line [18]:

χij = coh(Yij ,Yji) =
(Yij + Yji)(Yij + Yji)

2(Yij Yij + Yji Yji)
, (12)

where i and j denote the different DoFs in the VP FRF matrix. The only limitation of reciprocity is
that it can only be used on the non-diagonal entries, since on the diagonal the coherence is χii = 1
by definition. For the diagonal FRFs, the passivity can be evaluated since the driving-point FRFs
should always be minimum-phase functions; therefore, the phase of the driving-point FRFs should
always be bounded by ∠Yii ∈ [0◦, 180◦] for accelerance FRFs.
The formulation of the expanded VPT does not affect the calculation of the quality indicators.
Therefore, the sensor and impact consistency, as well as the reciprocity and passivity, can be used
to evaluate the quality of both the standard and expanded transformations.
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3 Application on a test-structure

This section demonstrates a practical application of the LM FBS using the standard and expanded
virtual point transformation on the test structure shown in Fig. 2. The test structure is designed to
mimic the dynamics in a real car of an engine unit flexibly mounted on a chassis. Rubber mounts
from the automotive industry are used to suspend a steel plate holding the excitation source, which
is an electrodynamic shaker. The structure is intended as a laboratory test bench for an application
of different concepts of dynamic substructuring and transfer-path analysis [19].

VP1

VP2

VP3

x
y

z

(a)

VP1

VP2

VP3

(b)

VP1
VP2

VP3

(c)

Figure 2: Test structure used for the comparison: a) assembly YAB representing an engine-transmission unit sus-
pension; b) transmission simulator YTS; c) source YA representing the car engine.

(a) (b)

(c) (d)

Figure 3: All measurement configurations of the test structure: a) assembly YAB; b) receiver with TS YBTS; c)
transmission simulator YBTS; d) source YA.

The coupling in this paper is between the source structure YA (Fig. 3d) and the receiver structure
YB, which is the frame with the rubber bushings included (Fig. 3a without the source). However,
the VPT measurements cannot be performed directly on the receiver side due to insufficient space
to position sensors and impacts. A Transmission Simulator (TS) YTS (Fig. 3c) is used to enable
measurements around the rubber bushings [20]. Moreover, the numerical condition of the coupling
procedure is increased, since the TS used has similar dynamic properties as the source structure
and with that the receiver structure in the decoupled state, YBTS (Fig. 3b), is behaving in a way
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similar to that in the final assembled state, YAB (Fig. 3a) [21]. Usually, a numerical model of the
TS is used to increase the quality of the decoupling; however, with this setup, an experimental
model of the TS was used. The final DS process can be represented with a simple equation, where
the circled plus/minus sign denotes the coupling/decoupling procedure:

YAB = YBTS 	YTS ⊕YA, (13)

where YBTS denotes the assembly of structures YB and YTS.

3.1 Application of the VPT

The virtual point transformation was applied to all three experimental models YBTS, YTS and
YA. One virtual point for each rubber bushing was used, altogether three VPT were performed
(see Fig. 2 and 4a). The rubber bushing at VP1 represents the transmission mount, VP2 is the
rubber bushing at the roll mount and VP3 is at the engine mount’s rubber bushing.

x
y

z

(a)

x

y
z

(b)

Figure 4: Transmission simulator structure: a) schematic representation of VPs together with visible impact locations
depicted with arrows in different color for each VP; b) photograph of the experimental setup.

The final assembly structure YAB (used as a reference) and YBTS were rigidly fixed on a stiff
and vibration-free test table during the measurements. The source YA and transmission simulator
YTS were measured in a free-free condition (see Fig. 4b). All the FRFs were measured by impact
testing using a modal hammer with a vinyl tip. For the standard VPT, three triaxial accelerometers
(Kistler Type 8688A) were used and nine different impact locations for each VP. Altogether, 27
translation channels with 27 impact locations were used for the standard VPT.
A rotational accelerometer (Kistler Type 8840) was used to measure the rotational response for
the extended VPT. The rotational accelerometer used measures only the rotation around one axis
and only one rotational accelerometer was available for the whole measurement setup. Therefore,
the rotational accelerometer was used as a roving sensor to acquire three rotational FRFs for each
VP (as depicted in Fig. 5 for two directions).
The VPT was performed on all three experimental models; however, the results shown for the VPT
quality in this section are only for the receiver structure with the TS YBTS. The quality of both
transformations can be estimated from the frequency-averaged coherence criterion for reciprocity
depicted in Fig. 6. The average reciprocity of the standard VPT is 58%, while the expanded VPT
with rotations has an average reciprocity of 61%.
The expanded VPT slightly outperforms the standard VPT, as can be seen from the average
reciprocity criterion. A similar observation can be made if we compare the separate FRFs: in
Fig. 7 the reciprocal transformed FRFs on YBTS VP1-y/VP1-θx (2,4) and VP1-θx/VP1-y (4,2) are

7
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Figure 5: Positions of the rotational accelerometer: a) VP1 direction -RX; b) VP3 direction +RX.
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Figure 6: Frequency-averaged reciprocity of the VPT for all three virtual points of the receiver structure with the
transmission simulator YBTS: a) expanded VPT; b) standard VPT.

shown.4 The expanded VPT outperforms the standard in the higher frequency range and in the
low-frequency range the FRFs obtained with the standard VPT are more reciprocal.
In Fig. 8 the transformed FRFs VP2-x/VP3-θz (7,18) and VP3-θz/VP2-x (18,7) are shown where
the expanded VP FRFs are more reciprocal over the whole frequency range.
For both transformations a relatively high sensor and impact consistency was obtained (on average
above 90% for the specific as well as for the overall consistency). Therefore, the positions and
orientations of the impacts and sensors can be assumed to be accurate and the assumption of the
interface rigidness in the frequency range of interest is satisfied. However, a high-quality VPT does
not necessarily guarantee consistent coupling results. In the following section the final coupling
results are presented and both transformations are compared.

3.2 Substructuring results

The final assembled system is shown in Fig. 9, where the positions of the reference sensors and
impact positions also are depicted. The reference FRFs were measured in the assembled system to

4The first number in the bracket (2,4) refers to the output position and the second to the input position in the
FRFs matrix i.e. (output,input).
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Figure 7: Comparison of specific virtual point FRFs VP1-y/VP1-θx (2,4) and VP1-θx/VP1-y (4,2) for the receiver
structure with the transmission simulator YBTS: a) expanded VPT; b) standard VPT.
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Figure 8: Comparison of the FRFs VP2-x/VP3-θz (7,18) and VP3-θz/VP2-x (18,7) for the receiver structure with
the transmission simulator YBTS: a) expanded VPT; b) standard VPT.

gain a reference with which the whole coupling procedure can be validated.

y
x

z

y

x

z

Figure 9: A view of the assembled system YAB together with the reference sensors (denoted with letter S) and
impact positions (denoted with letter I).
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The coupling FRFs are obtained using the LM FBS notation. A signed Boolean matrix B was used
to define the interface DoF for the coupling and decoupling procedure. SVD truncation was used
on the interface flexibility matrix Yint to remove the six smallest singular values before applying
the matrix inversion in Eq. (2) to decrease the errors of the coupling procedure [22].5

In Fig. 10, the FRF S15z/I10 is shown for both VP transformations, together with a reference. It
is clear that with the expanded VPT a more consistent FRF is obtained.

0 250 500 750 1000 1250 1500 1750 2000
Frequency f [Hz]

10−5

10−4

10−3

10−2

10−1

A
[m

/N
]

Reference

Coup. Exp. VPT

Coup. Std. VPT

Figure 10: Comparison of the final assembly FRF S15z/I10 obtained with a standard and an expanded VPT, together
with a reference measurement.

Similar results can be observed for the FRF S15x/I23 shown in Fig. 11. The coupling results from
the rotational accelerometer are in agreement with the reference, especially in the low-frequency
range. At higher frequencies the results from standard and expanded VPT are similar. One of the
possible reasons is that the assumption of the local rigidity is not completely valid any more and
the residual motion (Eq. (8)) after the transformation will contain not only the measurement error
(which should be lower for the expanded VPT), but also the flexible motion around the interface.
Therefore, both transformations will yield similar results as the primary source of error is the
flexibility of the interface.
A close-up view of the low-frequency range for the FRF S14x/I10 is shown in Fig. 12. The coupling
results with the expanded VPT are in agreement with the reference compared to the standard VPT.
To show the overall quality of the coupling results for both transformations, a coherence criterion
(Eq. (12)) is used to compare the coupling and reference results. The frequency-averaged value
of the coherence criterion is shown in Fig. 13. It is clear that the expansion of the VPT with a
rotational response increases the consistency of the coupling procedure for all the FRFs.

5With the three VPs on the TS, a certain level of over-determination can be expected at the interface, since the
whole block is in fact rigid in the low-frequency range. Therefore, even a small error in one of the VPTs can lead
to erroneous coupling results. Applying a truncated SVD on the interface flexibility Yint = BYA|BBT (see Eq. (2))
can be interpreted as a weakening of the interface compatibility, which is advantageous in this configuration.
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Figure 11: Comparison of the final assembly FRF S15x/I23 obtained with a standard and an expanded VPT, together
with a reference measurement.
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Figure 12: Comparison of the final assembly FRF S14x/I10 with a reference measurement in the low-frequency range:
a) expanded VPT; b) standard VPT.

4 Conclusion

Extending the virtual point transformation with a directly measured rotational response can im-
prove the consistency of the coupled FRFs. With the introduction of a rotational weighting matrix
in the VPT, the residuals on the rotation and translation sensors are minimized in a comparable
norm. With the inclusion of a rotational response, the virtual point transformation can become
less sensitive to small deviations in the positions and measurement sensitivity of the sensors.
An application of the extended VPT is presented on a test structure, mimicking the dynamics of
an engine unit flexibly mounted on a chassis. The coupling results are obtained with the expanded
VPT and are compared with the standard VPT. The additional information on the rotational FRFs
of the interface yields a more accurate coupling result, which can be observed on all the reference
FRFs. Currently, applying the proposed expansion of the VPT is hindered by the scarce availability
of rotational accelerometers, as only uni-axial rotational accelerometers are available on the market.
Additionally, due to the limited number of rotational accelerometers, the measurements usually
cannot be performed within a single measurement campaign, which can be time consuming if a
large number of VPs are present in a complex structure.
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Figure 13: Frequency-averaged value of the coherence criterion between the coupled and reference FRFs: a) expanded
VPT; b) standard VPT.
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